3D Go: Traditional Board Game in
Three-Dimension

Yun Miao
Graphics Lab, School of EECS
Oregon State University

August 30 2010

1 Introduction

3D Go envisions a new way to play the board game Go online. Players are provided with
a three dimensional surface as their game board to replace the traditional two dimensional
ones.

The game is a Java Applet running in a web browser, and employs client-server model to
enable multiplayer functionality. In addition to the features provided by the existing online
go games [1], 3D Go will give users the freedom of viewing the board from all angles and
distances.

Go is a game of territory. By changing the geometric property of the board, we are really
changing the terrain of a battlefield, making warfare more interesting and strategy more
sophisticated. In doing so, we are hoping not only to provide more exciting games for Go
players, but also seeking intriguing strategies and their correspondence to the mathematics
of Go.

2 Game Rules

In this section, we will define the terms in 3D Go, and introduce the game rules, which are
not greatly different from the traditional Go game.

Figure 1: Traditional Go board Figure 2: 3D Go board

Game Board The fundamental difference between 3D Go and 2D Go is the game board.
Traditional Go game uses a 19x19 grid (see Figure 1). 3D Go uses a 3D mesh as its board
(see Figure 2). Since we can rarely find a mesh with exactly 361 vertices, 3D Go will simply
use small meshes with number of vertices comparable to 361. Rather different from Chess,
Go stones are placed at intersections instead of the inside of a grid. In this report, an
intersection is called a vertex. The line connecting two adjacent vertices are called anedge.

Stones FEach Go game, including 3D Go, involves two players. One holds black stones.
The other holds white stones. The Black always plays first in Go.The players use the stones
to claim territory, initiate attacks, and establish defenses.

Liberty A liberty is an unoccupied neighbor of a group. A group consists of one or more
same colored stones. In Go, liberty accounts the ”breathing space” or ”life” of a group. A
group is alive when it has one or more liberties. In traditional Go, a single stone can have
either 4, 3, or 2 liberties. In 3D Go, a single stone cannot have fewer than 3 liberties due to
the fact that a 3D mesh should not be flat.

Atari When a stone or a group of stones only has one liberty left, it is said to be in Atari
(see Figure 3(b)).

Capture When a group of stones has no liberty, in other words, all neighbors are occupied
by opponent stones, the members are captured and the group dies. Just like what would
happen in a war, a group of troops would be captured or killed if they are surrounded by
their enemies. [2]

(a) A stone (b) Atari (c) Capture (d) Result
with 4 liber-
ties

Figure 3: The concept of liberty, atari, capture in 2D Go

Illegal Moves

1. Superposition is the act of placing a stone over another. Only one stone is allowed per
vertex.

2. Suicide. If the placement of a stone leads to its group’s liberty reducing to zero, then
the placement is forbidden (see Figure 4).

3. Ko (Eternity). A move is prohibited if it produces the same previous board position [4]
(see Figure 5).

Exception to Illegal Moves A suicide move which will not result in the same board as
the previous is the exception to the rule is considered legal(see Figure 6 and Figure 7).

J-: \%
-

Figure 4: Black stone cannot place itself in A because there is no liberty for it.

0.+_

Figure 5: A white stone is in Atari. One can place a black stone to capture the white.
However, this will put the new black stone in Atari. Black and white can keep capturing
each other forever this way.This kind of eternal loop is forbidden. Yet the white can place
stone somewhere else, then go back and sack the black stone.

3 Game Implementation

The Interface The game interface is built with Processing, an open source programming
language and environment for sketching images and animations. And the game back end is
supported by Java. Enabling picking by using an invisible buffer layer is an exciting progress
when I was designing the interface. In the buffer layer, all vertices are colored by a gray
scale color based on its index (index+1). During the game, the buffer layer would process
the color picked and from the color, thus identify the index of the picked object [3].

The Board The implementation of the game board is inspired by a C program that
constructs 3D mesh from PLY format file. The program treats each vertex, edge, and
face in the 3D mesh as an object. And it stores each type of objects in a corresponding
list. During initialization, the program constructs a large data structure called polyhedron
storing the vertex list, the edge list and the face list, with pointers between the elements.
For example, each vertex objects stores pointers pointing to the adjacent polygons/faces
and adjacent edges. This logic transforms into the board creation seamlessly. Afterall, the
board is a 3D mesh of a surface.

The Game States Go is a game of states. Whenever a stone is added to the board, the
state of the game changes. To go from one state to another, two elements are taken in to
consideration: the territory of oneself and the territory of the enemy. Territories are formed
by same-colored stones and have liberties as their breathing space. To keep track of the
territories on the board, there is a structure called Group. A Group always has a color. It
stores the indices of adjacent stones of that color into a hash set, thus treats a region of
stones as a whole. The reason for using hash set is not only due to its constant access time

i

Figure 6: In this case, two white stones are captured by placing black at B. It is impossible
to go back to the same board with just another whites move. So the blacks suicidal move is

legal.
3

o o
@ 2220
300

Figure 7: In both cases, if one can place a black stone in the suicidal position, a group of
white stones will be captured. So the next move by white will never revert to the previous
board.

for most element, but also the fact that no duplicates are allowed in a Group, since a stone
cannot be counted as a Group member twice. In addition, Group keeps track of the liberties
of a territory: another hash set of all the neighboring empty vertex indices of that group.
A single stone can form a group. But more likely, more same colored stones will be added
to the single stone’s neighborhood to enlarge the group. Using hash set allows the group to
grow flexibly with a small cost.

A game usually involves more than one regions of stones. So the program have another
important list to keep track of all the groups, namely GroupList. GroupList stores all the
groups. Each game would have two GroupList, one for Black, one for white. whenever a
move happens, the program updates the GroupList to eliminate dead Groups. Speaking
of the moves, there is another list that stores each move by its vertex index for future
regeneration of the Game board.

To summarize, Figure 8 at the end of this report is an illustration of the data structures
used by the game and their relations.

The Back-end The game logistic is the most difficult part of the project, because it
involves building a client-server application, which is left undone at this stage. The design
is lacking due to my lack of knowledge of the client-server applications. So I am leaving this
part as the future work of the project.

4 Result and Future Work

I have designed and implemented the game interface on a small 3x3x3 cube (see Figure
2). The program can be narrated by two diagrams: data structures (see Figure 8) and the
flow diagram(see Figure 9). The game now can run in a Firefox browser smoothly, and the

Vertex List

A 4

GroupList

A 4

Vertex
Xyz

index Vertex Index
Mmers . f Meighbor (an array of vertex)
verts(an array of index)

Group ———_|

char color Group
intvalenc —
intindex

Edge getMeighborList() HashSet<Integer> vertices;
HashSet<Integer= liberties;

index) char color;
verts(an array of index)

Face

public void merge(Group p})

Moves

A 4

Figure 8: The data structures used in the game.

user can place the stone with no problem. Yet bugs do exist. And as previously mentioned,
the back-end of the game is a vast blank. The design of the data structures is subject
to change. Reconstructing the game relies on the move list and therefore cannot be done
fast. In conclusion, I have started the project and give it a general direction. But The
heavy-lifting job is yet to be finished.

References

[1] Go, an online board game. http://uk.games.yahoo.com/online-games/board/
games_go.html, October 2010.

[2] How To Play Go. http://www.kiseido.com/ff.htm, August 2010.

[3] Picking With a Colored Buffer. http://wiki.processing.org/w/Picking with_a_
color_buffer, October 2010.

[4] The Interactive Way To Go. http://playgo.to/iwtg/en/, August 2010.

The first player login, choose his/her stone color, and the shape of the ml

¥
Is one player handicapped? If 50, heishe gets 1 place a number of stones on the board.
| Baih player agree 1 Start he game. I
ool Calculate the effect of the mave®
o
Black's twm
pass iliegal
Calculata the effect of the move. *
White's tum
Rusign
If prevdous fum IS also a pass
Resign
I presous tum is also
pass
Gamea COver
Entering marking dead sione siage

Both player marks the dead stone at he same time

}

Calculate Winner*

Figure 9: The flow diagram of the game.

